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Abstract: We apply the effective field theory definition of Minimal Flavour Violation

(MFV) to the MSSM. We explicitly show how, by this definition, the new sources of flavour

and CP violation present in the MSSM become functions of the SM Yukawa couplings, and

cannot be simply set to zero, as is common wisdom in phenomenological MSSM studies

that assume MFV. We apply our approach to the MSSM ∆B = 2 Hamiltonian at low

tan β. The limit of MFV amounts to a striking increase in the predictivity of the model. In

particular, SUSY corrections to meson-antimeson mass differences ∆Md,s are always found

to be positive with respect to the SM prediction. This feature is due to an interesting

interplay between chargino and gluino box diagrams (the dominant contributions) in the

different mass regimes one can consider. Finally, we point out that, due to the presence of

gluinos, the MFV MSSM does not belong — even at low tanβ — to the class of models with

the so-called ‘constrained’ MFV (CMFV), in which only the SM operator (V −A)⊗(V −A)

contributes to ∆Md,s. Consequently, for the MSSM and in the general case of MFV, one

should not use the Universal Unitarity Triangle (UUT), relevant for CMFV models, but

a MFV-UT constructed from βψKS
and |Vub| or γ from tree-level decays. In particular,

with the measured value of βψKS
, MFV implies a testable correlation between |Vub| and γ.

With the present high value of |Vub|, MFV favours γ > 80◦.
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1. Introduction

The analysis of accelerator data over the last two decades established the success of the

Standard Model (SM) pattern of flavour and CP violation. If the New Physics (NP)

introduced to stabilize the electroweak (EW) breaking scale had a sensibly different pattern

for such violations, it is natural to expect that it would have been already visible in the

considerable amount of precise data on flavour changing neutral current (FCNC) processes

available today. The coming years will show whether this picture is altered by new data, in

particular CP-violation in the Bs-system and rare K-decays, where large non-CKM sources

of flavour and CP-violation are still possible within the most popular extensions of the SM.
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On the theoretical side, the success of the CKM description of FCNC processes trig-

gered the idea that the dynamics responsible for the peculiar form of the SM Yukawa

couplings may be relevant only at energy scales much higher than the one typically intro-

duced to stabilize the EW breaking. Such high-energy dynamics would then generate only

the Yukawa couplings present in the SM and no additional flavour violating structures.

From the low-energy point of view, the SM Yukawa couplings are then the only ‘building

blocks’ regulating the amount of FCNC and CP violating processes, and their form is then

raised as a “symmetry requirement” for the flavour sector of any candidate extension of

the SM at the EW scale [1].

The above mentioned idea is known in the literature as Minimal Flavour Violation.

One could say that this idea in the quark sector has become the more precise, the more

experimental data tended toward it. A phenomenological definition of MFV, that uses (the

explicit occurrence of) the CKM matrix as the only source of flavour violation and restricts

the set of relevant operators in the low-energy effective Hamiltonian to the SM ones, has

been introduced in [2]. It implies a set of very special relations [2, 3] among observables in

the flavour sector, that have been extensively tested in the recent years. In particular, the

unexpected agreement of the so-called Universal Unitarity Triangle [2] with the available

data [4] has brought MFV to the fore, raising the question how to implement it in NP

models, whose flavour sector is a priori unrelated to the SM one.

Already at this stage, we would like to emphasize that, while pragmatic and phe-

nomenologically useful, the definition of MFV introduced in [2], to be called ‘constrained

MFV’ (CMFV) [5] in what follows, is not as general as the one in [1], and the difference

between the two approaches will emerge from our discussion. For this reason, in the present

paper we will use the general definition of [1] and only at the end we will investigate under

which assumptions the limit of CMFV can be reached in the specific framework of the

MSSM.

Stated loosely, the basic idea to provide a model independent definition of MFV is

as follows. The only low-energy remnant structures responsible for flavour violation are

the SM Yukawa couplings, the single ones ‘required’ at present by experiments. Then, the

flavour sector of every extension of the SM at the EW scale should be minimal flavour

violating if its flavour violating ‘building blocks’ are exclusively the SM Yukawa couplings.

This idea has been formulated rigorously by the authors of [1].

On the phenomenological side, the idea of MFV has very often been advocated to

better constrain models, whose predictivity is spoiled by the large number of parameters,

as is notably the case for the Minimal Supersymmetric Standard Model (MSSM). Focusing

on the latter, many studies do already exist in the literature, where the MFV paradigm

is explicitly advocated. However, many (most, actually) of such studies appeared before

the “effective theory” definition by [1] and use assumptions often not complying with such

definition. We stress that the latter is the only one that can be unambiguously applied in

extensions of the SM, since MFV is defined through the formal transformation properties

of the SM Yukawa couplings and can subsequently be applied to any new source of flavour

violation.

The aim of this paper is twofold. First, we reconsider the quark flavour sector of
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the MSSM and carefully discuss its MFV limit. We explicitly show how the new sources

of flavour and CP violation present in the MSSM become in this limit functions of the

SM Yukawa couplings, and cannot be simply dropped in MFV, as often assumed in the

literature. A simplistic but intuitive picture is that the off-diagonal entries in the soft terms

— the genuinely new sources of flavour violation in the MSSM — are not zero in MFV,

but instead ‘CKM-like’.

We then apply our approach to the specific case of the ∆B = 2 Hamiltonian in the

MSSM at low tan β. Such Hamiltonian, responsible for Bs,d meson mixings, provides a

concrete and phenomenologically interesting benchmark for the approach itself. Explicit

implementation of MFV in the MSSM leads to a striking improvement of its predictivity.

This is obvious if one thinks that the sector introducing the largest number of new param-

eters is notably the soft sector. The latter is now entirely constrained to be proportional to

appropriate combinations of the SM Yukawa couplings, so that the main unknowns turn out

to be the (real) proportionality factors (‘MFV parameters’), amounting to 12 independent

dimensionless parameters. Furthermore, one has to fix some real mass scale parameters

(‘SUSY scales’): the µ parameter, a squark mass scale m and trilinear coupling A, gaugino

masses M1,M2 and Mg̃ and the two Higgs soft terms mHu and mHd
. Hence, the mass

scales relevant to the ∆B = 2 case are in total 8, but we will see that only a subset of them

affects non-trivially the calculations. Finally, also tan β is of course a parameter, but we

set it to reference (small) values, whose choice does not affect our main findings.

Concerning the new sources of flavour violation specific to the ∆B = 2 case, we note

that contributions from boxes featuring gluinos and neutralinos, usually assumed not to

enter MFV calculations [6 – 10], do actually contribute. The flavour violating structures in

their couplings are proportional, as mentioned above, to appropriate combinations of the

SM Yukawa couplings, the combinations being fixed by the very definition of MFV [1].

The second aim of our paper is a detailed numerical study of the ∆B = 2 Hamiltonian

in the MFV MSSM at low tan β. In this study, mass scale parameters can be fixed to

reference values covering all the physically interesting mass scenarios that low-scale SUSY

could have. Concretely, we fixed µ to a small (200 GeV) or intermediate (500 GeV) or

large value (1000 GeV), covering both signs. For each choice of µ we then chose the squark

mass scale to four benchmark values in the range 100 ÷ 1000 GeV and so forth for the

other parameters. We considered a total of 48 scenarios. Then, the 12 MFV parameters

which govern proportionality to the Yukawa matrices are left free to float within reasonable

intervals.

Now, for every mass scenario considered, a random scan of the MFV parameters allows

to generate a range of predictions for the SUSY corrections to the SM meson-antimeson

mass differences ∆Ms,d. The predicted corrections display a number of remarkable features

(i) For each of the mass scenarios considered, corrections turn out to be always positive

and to float within a relatively narrow range of values when varying MFV parameters.

Specifically, in the case of Bs − Bs mixing, corrections are in the range ∆MSUSY
s

∼=
+(0 ÷ 2) ps−1. Given the still large error associated with the computation of the

matrix elements entering the ∆Ms determination, these corrections, at present, are
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however not large enough to distinguish the SM from the MFV MSSM at low tan β.

(ii) The positiveness of the sum of the SUSY contributions turns out to be caused by

the interplay between the two dominant of them, namely chargino and gluino boxes.

This interplay is mainly dictated by the relative importance of the µ parameter with

respect to the other SUSY scales. This can intuitively be understood by observing

that, if µ is small, it governs the chargino lightest mass eigenvalue, whereas large

values of µ increase the importance of scalar operator contributions coming from

gluino boxes.

(iii) By analyzing the single box contributions, we identify four main scenarios for the

interplay between chargino and gluino contributions. Such scenarios are ruled basi-

cally by the magnitude of µ and by that of the squark mass scale m. Variation of the

other SUSY scales plays only a marginal role in the qualitative picture that emerges.

(iv) Since we restrict our analysis to low tan β, a naive expectation would be that most

of the contributions be proportional to the SM left-left current operator, since the

down-quark Yukawa matrix should be negligible. We find departures from this pic-

ture, arising when µ is not small in magnitude, and due to gluino contributions.

Responsible for these departures are, in particular, the LR and RR submatrices of

the down-squark mass matrix. If the down Yukawa is set to zero, these submatrices

are respectively zero or proportional to the identity matrix. On the other hand, when

the down Yukawa is kept, they give rise to the bulk of contributions from operators

other than the SM one.

The rest of the paper is organized as follows. In section 2 we recall the effective

theory definition of MFV, in the formalism of the MSSM. Then, in section 3, we apply

such definition to the flavour sector of the MSSM, in particular to the soft SUSY breaking

terms, by discussing their MFV relations to the SM Yukawa couplings. In section 4 we

then focus on the ∆B = 2 Hamiltonian in the MSSM at low tan β. We collect here all the

basic formulae and discuss the steps needed to evaluate their MFV limit in the light of the

procedure described in the previous sections. Section 5 presents our numerical strategy to

explore the MFV MSSM predictions for ∆Ms,d and a detailed accout of our main findings,

in particular the features outlined in the above points (i) to (iv). In section 6, we then

elaborate on our findings, by describing additional numerical studies performed to clarify

the issues emerged, like the role of tan β. Section 7 is devoted to various considerations on

the topic of MFV, triggered by what we learned from the study carried out in the previous

sections. One of such reflections concerns the definition of the Universal Unitarity Triangle,

which turns out not to be a construction always valid in MFV. To this point we devote

section 8. Finally, section 9 presents our conclusions and outlook. In the appendix we

collect the complete list of Wilson coefficients for the ∆B = 2 Hamiltonian in the MSSM

at low tan β.
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2. Minimal flavour violation: effective theory definition

In a top-down approach, the question how to build up concretely the MFV hypothesis in

a given NP framework translates into how to define MFV in the presence of new flavour

violating interactions, a priori unrelated to the SM ones. To understand this point, it is

first useful to remind the structure of flavour breaking in the SM. The SM flavour symmetry

group and its breaking have been first elucidated in [11, 12]. Responsible for such breaking

are the SM Yukawa couplings, and their transformation properties under the flavour group

can be identified by requiring (formal) invariance of the Yukawa interactions. Flavour

violation is recovered as the spurion Yukawa “fields” assume their background values.

MFV then demands the Yukawa background values to be the only structures generating

the observed flavour (and CP) violation. This definition, which has the advantage to hold

model-independently, has been introduced by D’Ambrosio et al. [1].

Following this approach, in the context of a given NP model, every new flavour violating

“coupling” can be classified according to its transformation properties under the SM flavour

group, and — if MFV holds — rewritten in terms of combinations of the SM Yukawa

couplings transforming in the same way.

Such procedure has been detailed in [1]. We now restate it briefly for the MSSM with

R-parity, which is our case of interest. The relevant quantity is the superpotential W ,

which reads

W = ǫij

(

Y IJ
u H i

uQIjUJ + Y IJ
d H i

dQ
IjDJ + Y IJ

e H i
dL

IjEJ + µH i
uHj

d

)

, (2.1)

with the matter superfields Q, U , D, L, E (containing SM fermions) and Hu,d (containing

the Higgs doublets). Here I, J and i, j denote flavour and SU(2)L indices, respectively.

The notation and conventions comply entirely with [13].

Out of the largest possible group GF of field redefinitions that commutes with the

gauge group [11],

GF = [SU(3) ⊗ U(1)]5 ≡
⊗

F=Q,U,D,L,E

[SU(3) ⊗ U(1)]F , (2.2)

the Yukawa interactions in the superpotential (2.1) break the flavour group [SU(3)]5 ⊗
U(1)E [14, 1]. The flavour symmetry can formally be recovered in eq. (2.1) by treating

Yu,d,e as spurions and requiring them to have indices transforming under [SU(3)]5 as follows

[Yu]3Q3U
, [Yd]3Q3D

, [Ye]3L3E
, (2.3)

with the subscript Q,U,D,L,E referring to an index that transforms as the corresponding

representation under SU(3)Q,U,D,L,E, respectively, and as a singlet under all the other group

factors. Note that the superfields U,D,E are left-handed but must describe right-handed

particles. As a consequence their component fields are defined with a charge conjugation

operation and they transform as 3 representations under SU(3)U,D,E , respectively.

Using the [SU(3)]5 symmetry, the fermion superfields can be suitably shifted to have

Yukawa couplings in the form

Yu = KT Ŷu , Yd = Ŷd , Ye = Ŷe , (2.4)
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with the Ŷ diagonal matrices and K the CKM matrix. This form is not the usual one,

since quark mass matrices are not simultaneously diagonal. However, it is very useful

when ranking different flavour changing effects, since the top Yukawa (the dominant one)

displays explicit proportionality to the CKM matrix.

For low tan β ≡ 〈Hu〉/〈Hd〉, all FCNC effects are dominantly described by one single

off-diagonal structure [1]

(λFC)ij ≡
{

(YuY †
u )ij ≈ λ2

t K3iK
∗
3j , i 6= j ,

0 , i = j ,
(2.5)

with λt = (Ŷu)33. Note in fact that higher powers of YuY †
u can be rewritten in terms of

YuY †
u times an appropriate power of λ2

t . Subleading effects on the r.h.s. of eq. (2.5) are

suppressed by powers of mc/mt.

The main observation [1] is now that, if MFV holds, soft SUSY-breaking terms are

related to the SM Yukawa couplings (2.4) and the explicit relations can be constructed

by just using the formal transformation properties of (2.5) under the flavour group. Such

derivation will be presented in section 3. In section 4 we will subsequently use the cal-

culated SUSY parameters to evaluate the MSSM contributions to the ∆B = 2 effective

Hamiltonian, to which we will restrict the rest of the analysis. The latter will allow us

to quantitatively assess the features of the SUSY contributions in the MFV limit in a

benchmark case like meson oscillations.

In this respect, we anticipate that even if (λFC)ij in eq. (2.5) provides the dominant FC

mechanism, a detailed study shows that effects proportional to the down-quark Yukawa

cannot actually be neglected. The latter does not provide by itself an additional FC

mechanism — as one can see from eq. (2.4) — but still its effects can correct the magnitude

of those provided by (λFC)ij . This can be understood by simply looking at the LR entries

of the down-squark mass matrix (see eq. (3.4) below). The latter are proportional to µYd,

and if µ is not small, the corresponding terms cannot be dropped even if Yd ≪ Yu.

Focusing again on the ∆B = 2 Hamiltonian, this mechanism also regulates the relative

importance of contributions to operators beyond the SM left-left vector operator Q1. This

can also be naively understood from the down-squark mass matrix, once its MFV limit is

performed. In this limit, in fact, the LR and RR sectors are zero or respectively propor-

tional to the identity matrix, if Yd → 0. As a consequence one would expect the SUSY

contributions to the ∆B = 2 Hamiltonian be in the Wilson coefficient of Q1 only. This

picture is largely modified or completely spoiled when one includes Yd, depending on the

mass scenario chosen for the SUSY parameters. The main actor in this respect is again

the µ parameter, for the reason outlined above.

3. MFV relations of MSSM parameters to SM Yukawa couplings

We now discuss how the above picture concretely applies to the MSSM with R-parity

and softly broken SUSY. In this model, the part of the Lagrangian responsible for flavour

violation reads

Lf.v.
MSSM = [W ]θθ + c.c. + Lf.v.

soft , (3.1)
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with W the superpotential of eq. (2.1) and Lf.v.
soft given as

−Lf.v.
soft =

[

(mIJ
Q )2

(

(ũI
L)∗ũJ

L + (d̃I
L)∗d̃J

L

)

+ (mIJ
U )2ũI

R(ũJ
R)∗ + (mIJ

D )2d̃I
R(d̃J

R)∗

+(mIJ
L )2

(

(ν̃I
L)∗ν̃J

L + (ẽI
L)∗ẽJ

L

)

+ (mIJ
E )2ẽI

R(ẽJ
R)∗

+(mHu)2
(

(h1
u)∗h1

u + (h2
u)∗h2

u

)

+ (mHd
)2

(

(h1
d)

∗h1
d + (h2

d)
∗h2

d

)

]

−
[

ǫij

(

AIJ
u hi

uq̃Ij
L (ũJ

R)∗ + AIJ
d hi

dq̃
Ij
L (d̃J

R)∗

+AIJ
e hi

dℓ̃
Ij
L (ẽJ

R)∗ + Bhhi
uhj

d

)

+ c.c.
]

, (3.2)

i.e. the usual soft Lagrangian with omitted gaugino mass terms.

The MSSM Lagrangian, with the above superpotential and soft pieces, gives rise to

the following 6 × 6 squark mass matrices

M2
ũ =





v2
2
2 YuY †

u + (m2
Q)T − cos 2β

6 (M2
Z − 4M2

W )11 −µ∗ v1√
2
Yu − v1√

2
tan βAu

−µ v1√
2
Y †

u − v1√
2
tan βA†

u
v2
2
2 Y †

u Yu + m2
U + 2

3 cos 2βM2
Zs2

w11



 ,

(3.3)

M2
d̃

=





v2
1
2 YdY

†
d + (m2

Q)T − cos 2β
6 (M2

Z + 2M2
W )11 µ∗ v1√

2
tan βYd + v1√

2
Ad

µ v1√
2

tan βY †
d + v1√

2
A†

d

v2
1
2 Y †

d Yd + m2
D − cos 2β

3 M2
Zs2

w11



 .

(3.4)

If MFV holds, the new sources of flavour violation present in the soft terms must be

related to SM Yukawa couplings. To this end, they can again be formally treated as spurion

fields, with indices transforming under the flavour group as follows:

[m2
Q]3Q3Q

, [m2
U ]3U 3U

, [m2
D]3D3D

, [Au]3Q3U
, [Ad]3Q3D

. (3.5)

Recalling Yukawa transformations (2.3), one can then write the following MFV relations [1]1

[m2
Q]T = m2

(

a111 + b1YuY †
u + b2YdY

†
d + b3YdY

†
d YuY †

u + b4YuY †
u YdY

†
d

)

,

m2
U = m2

(

a211 + b5Y
†
u Yu

)

,

m2
D = m2

(

a311 + b6Y
†
d Yd

)

,

Au = A
(

a4Yu + b7YdY
†
d Yu

)

,

Ad = A
(

a5Yd + b8YuY †
u Yd

)

, (3.6)

where, in the first line, we have reported the transpose of m2
Q, since it is the latter to

appear in the squark mass matrix in the usual conventions [13]. The ai, bi coefficients

are real proportionality factors, whose allowed range of values will be studied in section 5

1Note that b3 and b4 must be equal, due to the hermiticity of m2
Q.
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below. The overall mass scales m and A fix the order of magnitude of the respective soft

terms, when the coefficient multiplying them is of O(1). Expansions (3.6) are accurate to

all orders in λt and λb ≡ (Ŷd)33. Subleading effects are suppressed by powers of mc/mt

and/or ms/mb.

Starting from the mass matrices (3.3)–(3.4), and expressing the soft terms according

to expansions (3.6), it is then customary to perform a superfield redefinition leading to

diagonal mass matrices for the quarks. The unitary matrices adopted are the same as in

the SM: here one defines shifts

uL → VQ1uL , dL → VQ2dL ,

uR → VUuR , dR → VDdR , (3.7)

and the fields on the r.h.s. form the CKM basis. In the MSSM, the same shifts are carried

out at the superfield level and lead to the so-called super-CKM basis. After performing

such transformations, one gets diagonal Yukawa matrices Ŷu, Ŷd, and can use relations

m̂u =
v2√
2
Ŷu , m̂d = − v1√

2
Ŷd , (3.8)

in eqs. (3.3)–(3.4) to display explicit dependence on the quark mass matrices m̂u,d.

In the super-CKM basis, the matrices m2
Q,U,D and Au,d have still off-diagonal entries.2

Then, in order to have the (hermitian) mass matrices in eqs. (3.3)–(3.4) in diagonal form,

one needs a second redefinition, performed on the up- and down-squark fields, respectively.

Such redefinition leads from the basis ũ, d̃, to the mass eigenstate basis U,D, which in the

conventions of [13] reads

ũi = (ZU )ijUj , d̃i = (Z∗
D)ijDj , (3.9)

with the index i = 1, 2, 3 for ũL, d̃L and i = 4, 5, 6 for ũR, d̃R.

Using transformation (3.9), the down-squark mass term in the Lagrangian is diagonal-

ized according to

d̃T M2
d̃

d̃∗ = DT [Z†
DM2

d̃
ZD]D∗ = DT M̂2

D D∗ , M̂2
D = diag{M2

D1
, . . . ,M2

D6
} , (3.10)

with M2
d̃

given in eq. (3.4) and d̃ (D) a column vector built out of the d̃i (Di). An entirely

analogous equation holds for the case of up-squarks.

In practical calculations, flavour violation is driven either by non-diagonal squark prop-

agator matrices, when working in the d̃, ũ basis, or by a ZD,U matrix appearing in vertices

with a squark leg (gluino-quark-down squark, neutralino-quark-down squark and chargino-

quark-up squark, in our case). In the former case, one usually adopts an expansion in

off-diagonal “mass insertions” and stops to the first non-trivial order, in the well-know

Mass Insertion Approximation (MIA) [15, 16]. The MIA provides a very useful tool to

make flavour violation mediated by soft SUSY breaking terms most transparent and man-

ageable, since it ‘linearizes’ the mechanism of flavour violation, but it is an approximation.

2Such entries are responsible in general for genuinely supersymmetric flavour violation in the mass

matrices (3.3)–(3.4). In our case, as we said, soft term are instead fixed by the MFV expansions (3.6).
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In our MFV formulae, we will instead stick to the mass eigenstate basis, i.e. to the

exact calculation. Among the M2
d̃

entries in eq. (3.4), the soft terms will be related through

proportionality factors to the SM Yukawa couplings, according to the expansions (3.6).

Then the M2
d̃

mass matrix turns out to depend only on µ (which must be real), on tan β,

on the two squark scale factors A,m (see eq. (3.6)) and on the proportionality factors.

Upon rotations of the squark states from the super-CKM basis to the mass eigenbasis,

eqs. (3.9), the pattern of flavour violation is then transferred from the non-diagonality of

the mass matrices, to the off-diagonal entries of the matrices ZD,U , entering quark-squark

interactions with gluinos and neutralinos.

Let us show with a simple example how flavour violation in the ZD,U becomes ‘CKM-

like’, after MFV expansions are imposed. Let us consider the down-squark mass matrix of

eq. (3.4), with soft SUSY parameters given according to the MFV expansions in eq. (3.6).

Adopting the approximation Yd → 0, one can drop all the corresponding terms in such

expansions. One can then perform the super-CKM rotation on the squark fields to have

the up Yukawa diagonal. The down-squark mass matrix assumes, in this basis and under

these assumptions, the following form

M2
d̃

=

(

m2(a111 + b1(K
†Ŷ 2

u K)T ) − cos 2β
6 (M2

Z + 2M2
W )11 0

0 m2a311 − cos 2β
3 M2

Zs2
w11

)

,

(3.11)

whence the unitary transformation (3.9) leading to the mass eigenbasis for the down-

squarks is obviously

ZD =

(

KT 0

0 11

)

. (3.12)

As one can see, off-diagonal entries in ZD are not zero, but CKM-like (in this simple case

only in the LL sector). They will appear in the couplings of gluinos and neutralinos with

quarks and squarks.

When one includes in the diagonalization the effects of the down-Yukawa matrix, the

diagonalization becomes more involved. However, flavour violation in the ZD,U is still

encoded in their dependence on the SM Yukawa couplings.

This observation allows us to comment on a conventional assumption present in most

of the calculations performed in the MFV MSSM to date. This assumption amounts to

dropping altogether flavour violating entries in the ZD,U , due to the common wisdom

that, if MFV holds, flavour violation can come only from couplings explicitly displaying

proportionality to the CKM matrix. The effective theory definition of MFV [1] implies

that the correct approach is instead to think the off-diagonal terms in the ZD,U as being

not zero, but instead dictated by the SM Yukawa couplings. In the simple example above,

this dependence reconstructs in (the LL sector of) ZD directly the CKM matrix.

The bottom line is that, in the MFV MSSM, one has to diagonalize squark matrices

after imposing expansions (3.6), so that the diagonalization matrices ZD,U bear dependence
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on such expansions and then use the ZD,U in all vertices where they are required. This

point has already been stated in [1].

For the sake of completeness, we also report here the chargino, neutralino and charged

Higgs mass matrices, since these particles will enter our subsequent calculations. The

notation used is again that of [13]. Charginos are two Dirac fermions χ1,2 whose mass

matrix reads
(

Mχ1 0

0 Mχ2

)

= ZT
−

(

M2
ev2√
2sW

ev1√
2sW

µ

)

Z+ , (3.13)

with Z± unitary matrices, chosen from the requirement 0 < Mχ1 < Mχ2 . Similarly,

neutralinos are four Majorana fermions χ0
1,...,4, with mass matrix given by









Mχ0
1

0
. . .

0 Mχ0
4









= ZT
N













M1 0 −ev1√
2cW

ev2√
2cW

0 M2
ev1√
2sW

−ev2√
2sW

−ev1√
2cW

ev1√
2sW

0 −µ
ev2√
2cW

−ev2√
2sW

−µ 0













ZN , (3.14)

with ZN a unitary matrix, whose form is again specified after requiring positiveness and

ordering for the eigenvalues.

Finally, one has two physical charged Higgs scalars H±
1 , with mass

M2
H±

1
= M2

W + m2
Hu

+ m2
Hd

+ 2|µ|2 , (3.15)

where m2
Hu

and m2
Hd

are soft terms for the corresponding Higgs doublets, given in eq. (3.2).

Away from the unitary gauge, one must also include in the calculations the H±
2 fields, which

provide the longitudinal degrees of freedom for the W bosons in the unitary gauge.

When assuming MFV, the gaugino masses M1,2 are real.3 In fact, if one allows non-

trivial phases in M1,2, they are communicated to the diagonalization matrices ZN and Z±,

which in turn enter Feynman rules for charginos and neutralinos. One would then have

new sources of CP violation, not allowed by the MFV hypothesis. The same argument

applies to the Higgs sector parameter µ.

4. ∆B = 2 in the MFV MSSM at low tan β

The MFV limit of the MSSM, as described in the previous sections, can now be applied

to a concrete example, that of the ∆B = 2 Hamiltonian, which is responsible for meson-

antimeson oscillations. The latter has recently received renewed theoretical interest, in view

of the very precise measurement of Bs − Bs oscillations by the CDF collaboration [17].

The basic ingredient to describe meson-antimeson oscillations is the quantity M(M)
12 ≡

〈M |H∆F=2
eff |M 〉, with M = K, Bd,s. Within the MSSM, H∆F=2

eff has the form

H∆F=2
eff =

5
∑

i=1

CiQi +
3

∑

i=1

C̃iQ̃i + H.c. , (4.1)

3Mg̃ can be chosen as real without loss of generality [13].
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Figure 1: Feynman diagrams describing meson-antimeson oscillations in the MSSM. The crossed

diagrams (second row) are needed only if the fermion in the loop is a Majorana particle. The

notation for the various lines is the same as in [13].

with the Qi given, in the case of Bs − Bs mixing, by

Q1 = (siγµ L bi) (sjγµ
L bj) ,

Q2 = (siPL bi) (sjPL bj) ,

Q3 = (siPL bj) (sjPL bi) ,

Q4 = (siPL bi) (sjPR bj) ,

Q5 = (siPL bj) (sjPR bi) . (4.2)

The operators Q̃1,2,3 are obtained from Q1,2,3 by the replacement L → R. The left- and

right-handed projectors are defined as PR,L = (1±γ5)/2 and γµ
R,L = γµPR,L; i, j are colour

indices. In the case of Bd, one should replace s → d in eq. (4.2).

Each of the Wilson coefficients in eq. (4.1) features, for low tan β, the following con-

tributions

Ci = CSM
i + CH+H+

i + Cχ+χ+

i + C g̃g̃
i + C g̃χ0

i + Cχ0χ0

i , (4.3)

where, for simplicity, we have omitted to specify the flavour indices of the external quarks,

as in eq. (4.1). In eq. (4.3), the first term on the r.h.s. represents contributions from the SM

boxes. The additional contributions, that need to be considered within the MSSM, come

respectively from boxes with charged Higgs-up quarks, chargino-up squarks, gluino-down

squarks, mixed gluino- and neutralino-down squarks, and neutralino-down squarks. The

possible Feynman diagrams involved in each case are represented in figure 1. For the SM,

charged Higgs and chargino cases, one has Dirac fermions propagating in the diagrams, so

that only the boxes in the first row of figure 1 must be considered. The other contributions

involve Majorana fermions in the loop, so that also crossed boxes (second row of figure 1)

need to be calculated.

The complete list of Wilson coefficients for the ∆B = 2 effective Hamiltonian in the

MSSM is reported explicitly in the appendix. Such coefficients are calculated in terms
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of loop functions, depending on the particle masses involved in the loops, and couplings,

possibly featuring the rotation matrices ZU,D (squarks), Z± (charginos), ZN (neutralinos)

introduced in the previous section to define the respective mass eigenstates. To evaluate

the Wilson coefficients in MFV, the procedure to follow is now clear:

1. Expand the soft terms as in eq. (3.6) if they transform non-trivially under the flavour

group, or take them as real if they are singlets;

2. Plug them into the mass matrices and diagonalize the latter to obtain the mass

eigenvalues and the rotation matrices defining the eigenbases;

3. Use the obtained eigenvalues and rotation matrices in the general MSSM formulae

for the Wilson coefficients.

Now that we have all the ingredients of the calculation, we conclude by listing the

number of parameters involved in the MFV limit of the ∆B = 2 MSSM Hamiltonian for

low tan β. The expansions of the soft terms in the squark mass matrices, eq. (3.6), involve

12 real proportionality factors, and 2 overall mass scales: a ‘generic’ squark mass m and a

‘generic’ trilinear mass term A. In addition one has to fix three real gaugino mass terms

M1, M2 and Mg̃ and the real µ parameter. Finally, the soft Higgs sector adds 2 more

mass scales, namely mHu and mHd
. Taking into account the requirement of correct EW

symmetry breaking, amounting to one constraint, one has a total of 12 + 7 parameters.4

Among the latter, actually the dependence of the computed Hamiltonian on mHu,d
can

be trivially ‘factored out’ and not considered in MonteCarlo approaches. In fact, mHu,d

enter only Higgs boxes, and the latter in turn depend exclusively on mHu,d
and on µ,

through eq. (3.15), which fixes the physical charged Higgs mass MH±
1

. There is instead no

dependence on any of the other SUSY scales and on the MFV parameters. In addition,

considering that m2
Hu,d

are demanded by the soft Lagrangian (3.2) to be real, but not

necessarily positive, it is clear that, for every choice of µ, it is always possible to tune

m2
Hu,d

(compatibly with the EW symmetry breaking constraint) so that MH±
1

assumes any

desired value. As a consequence, one can trade the parametric dependence on m2
Hu,d

for

that on M
H±

1
, which is then the only SUSY parameter in the Higgs contributions.

In the next section, we will discuss the MonteCarlo procedure adopted to explore the

above parameter space. We will see that the relevant quantities to be scanned turn out to

be only the 12 MFV proportionality factors, so that the predictivity and testability of the

model end up to be dramatically improved.

5. MFV MSSM predictions for meson mixings

We are now ready to study the MFV MSSM ∆B = 2 amplitude, and its predictions for

∆Ms,d, by varying the SUSY scales as well as the MFV proportionality parameters. To this

4We note that soft terms, expanded according to eq. (3.6), do actually depend on the product between

a mass scale and a MFV coefficient, so that the real parametric dependence is on the product between the

two. Considering this, the above counting is somehow an overcounting.
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end, a MonteCarlo approach which generates every (or a subset) of the parameters accord-

ing to flat distributions within given ranges provides the most systematic and unprejudiced

tool. Here below we describe in more details our adopted strategy.

5.1 Strategy

Our reference numerical study was carried out by fixing the mass parameters to ‘scenarios’,

and then, for each scenario, scanning with flat distributions the 12 parameters (ai, bi) ruling

the MFV expansions (3.6). In addition, we set tan β = 3.5

The choice of the mass parameters was designed to cover, in an exhaustive way, all the

mass scenarios reasonably allowed for low-energy SUSY. To this end, we have started from

considering the information on the ranges permitted to SUSY masses, that is provided by

experiments [18]. On this point we make the following remarks

• Concerning squark masses and Mg̃, the most updated bounds ([19, 20] and updates

thereof) are given in the plane Mq̃ − Mg̃, where Mq̃ denotes a generic squark mass

(see [19, 20]). The profile of the bound is such that when the gluino mass can be

small, then the generic squark mass is constrained to be large, and viceversa. We

have chosen four points in the plane Mq̃ − Mg̃, namely6

(Mq̃,Mg̃) = {(100, 700), (200, 500), (300, 300), (1000, 195)} GeV , (5.1)

and used them to fix respectively m and Mg̃. We note that m is strictly a represen-

tative quantity for the squark mass only when the a-parameter multiplying it (see

eq. (3.6)) is of O(1). However, the detailed choice of m turns out to play a marginal

role in our main findings, and the above argument serves only to give a reasonable

criterion on choosing the pair of parameters m and Mg̃. We further note that the

case in which both m and Mg̃ are small is ‘covered’ when the a-parameter is small.

• The generic trilinear coupling A was fixed to the value A = 2m.7 This choice, when

m is a representative quantity for squark masses, helps having a not too low mass

for the lightest Higgs [21]. Again, the full spectrum of deviations from this relation

is actually covered when scanning the a-parameters multiplying m and A.

• Constraints on µ are generically model-dependent. We then considered small, inter-

mediate and high values for its magnitude by setting the following possibilities

µ = {±200,±500,±1000} GeV . (5.2)

5The impact of variations of tan β in the range [3, 10] was addressed in a specific set of runs to be

described below.
6The bounds in the (Mq̃ , Mg̃) plane provided by refs. [19, 20] are in fact somehow tighter than the values

chosen in eq. (5.1). We note however that these experimental bounds are obtained assuming a specific

mSUGRA scenario. Moreover, in the present study we take the approach of preferring smaller masses, in

order to address the possibility of large signals in meson mixings. As it will emerge from the discussion,

even in this approach NP signals in the MFV MSSM are however typically found to be within present errors

associated with mixings themselves.
7For m = 1000 GeV we chose also A = 1000 GeV.
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• M1 and M2, as well as µ, enter chargino and neutralino mass matrices. The choice

of M1 and M2 in connection with that of µ determines the amount of gaugino- and

higgsino-like components in their field content. In order to have representative cases

with respect to the experimental information [18], we made the following choices

|µ| = 200 ⇒ (M1,M2) = {(500, 500), (1000, 1000)} GeV ,

|µ| = 500 ⇒ (M1,M2) = {(100, 200), (500, 500)}GeV ,

|µ| = 1000 ⇒ (M1,M2) = {(100, 200), (100, 500)}GeV ,

(5.3)

i.e. two possible choices for every of the six µ values listed in eq. (5.2). Choices (5.3)

translate into values for the masses of the lightest chargino and neutralino, which in

turn tune the importance of the respective box contributions. We note that, in our

case, neutralinos have almost no impact on the sum of the contributions, even when

they are very light. This applies also to the mixed gluino-neutralino boxes. In this

respect, we observe that, from eqs. (5.1)–(5.3), there are unphysical cases among our

considered scenarios in which the lightest SUSY particle (LSP) is not a neutralino.

However, given the mentioned marginal impact of neutralino masses on our main

findings, one can always lower the value of M1 in order to have a neutralino as the

LSP. The values chosen in eq. (5.3) are intended to ascertain that the impact of the

choice of the neutralino masses be in fact minimal.

Concerning charginos, their contribution is regulated by the lightest between M2 and

|µ| (see eq. (3.13)), the detailed choice of the other parameters playing basically no

role on the main findings we will discuss.

• The remaining two parameters mHu,d
enter exclusively Higgs boxes. As we also

remarked at the end of section 4, the calculation of the latter can be ‘factored out’,

since they depend only on mHu,d
and on µ, through relation (3.15), and on no other

SUSY scale. With reference still to the discussion at the end of section 4, it is also

clear that the single relevant SUSY scale introduced by the Higgs sector is the physical

charged Higgs mass MH±
1

, eq. (3.15), and not mHu,d
separately.

The dependence of Higgs contributions on variations of MH±
1

and on tan β will be

studied in a separate section below. Here we mention that such contributions are

positive for every allowed value of M
H±

1
if tan β ≤ 7, and even for tan β = 10,

they reach (small) negative values only with very light MH±
1

. As a consequence,

their impact for low tan β is just an overall (positive) shift of the sum of the other

contributions.

This completes the discussion on the choice of the SUSY scales in our main analysis.

The mass scenarios explored amount to 48. Taking into account the various remarks made

above on every specific subset of the parameters, we believe that such analysis covers

extensively all the interesting combinations in the SUSY parameter space.

For each of the above scenarios, we then scanned the MFV parameters ai, bi assuming

(uncorrelated) flat distributions according to (see also footnote 1)

0.25 ≤ a1,2,3 ≤ 1 , − 1 ≤ {a4,5, b1,...,8} ≤ 1 . (5.4)
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The lower bound in a1,2,3 was not chosen to be zero, in order not to have to discard most

of the resulting squark matrices because of a negative lowest eigenvalue.

We finally note that, in our analysis, we do not include other FCNC constraints which

could in principle play a role for low tan β, in particular b → sγ. In this respect we observe

that, as already mentioned in the introduction, NP corrections to meson mixings within the

MFV MSSM are typically within present errors and the inclusion of additional constraints

can only further suppress NP signals. In addition, as again mentioned in the introduction,

our analysis will lead to the identification of mass regimes, ruled by the interplay between

chargino and gluino contributions, with the Higgs contributions discussed separately. Since

in b → sγ the main role is played by chargino and Higgs contributions (see e.g. [22]), it is

clear that the b → sγ constraint would not exclude any of the above regimes.

5.2 Results

We now discuss our results. The latter were all obtained using the MonteCarlo strategy

outlined in the previous discussion. We have however also verified the specific findings

with alternative runs, designed to uncover possible loopholes. We will refer to them in due

course.

Our phenomenological analysis starts from the calculated meson-antimeson oscillation

amplitude

M(M)
12 ≡ 〈M |H∆F=2

eff |M〉 , (5.5)

with M = K, Bd,s. Wilson coefficients, evaluated at the matching scale, are subsequently

run to the mb pole mass or to 2GeV, the scales at which the effective matrix elements are

evaluated on the lattice [23, 24] in the Bd,s and K case, respectively (see also [25 – 29]). In

the running, we used NLO formulae from [30, 31], with the matching scale chosen to be at

350 GeV, as a compromise between all the SUSY scales entering the calculation.8

Then, from twice the amplitude (5.5), one can calculate the experimentally measured

mass differences by taking the absolute value or respectively the real part in the Bd,s or K

cases [32]. In the present study, we restrict to ∆Ms,d.

As a first check, we have verified that the phase of meson-antimeson oscillations in

the MFV MSSM be aligned with the SM one. This feature is shown in figure 2 for the

∆Ms case. In the figure, we have chosen a specific mass scenario for the SUSY scales

and scanned the MFV parameters ai, bi, obtaining a distribution of values for M12. As

expected, values are aligned along a line with slope tan(argM12).

In MFV, the phase of meson-antimeson oscillations is by definition not a good observ-

able to search for NP effects. However, the same does not apply to the mass differences. As

a matter of fact, by studying the latter, we found a number of interesting and sometimes

surprising features, which we now discuss.

8Variations around this value have basically no effect on the results.
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Figure 2: Lego plot showing the alignment of the phase of SUSY contributions to the SM phase

in the MFV MSSM M12 for the case of Bs. In this example SUSY scales are (GeV): µ = 1000,

m = 200, Mg̃ = 500, M1 = 100, M2 = 500. In the legend, ∆Ms is calculated from the absolute

value formula, keeping the sign of the real part. The percentage gives the integrated number of hits

for which ∆MNP
s > 0.

(i) NP contributions are positive

A first surprising fact emerges by studying the sum of the SUSY contributions to the

meson mass differences. As already mentioned above, for every of the mass scenarios

considered, we have randomly generated the MFV parameters ai, bi. The obtained

distribution of values in M12 translates into a corresponding distribution for the

meson mass differences. As an example, one can look again at figure 2, displaying

M12 for the Bs-meson. In this case, Im(M12) ∼= 0 and an excellent estimate of

∆MNP
s is provided by the projection of the distribution along the Re(M12). In the

left panels of figures 3 to 6 we show how the distribution in ∆MNP
s looks like in four

representative scenarios.9

As one can immediately realize, almost the totality of points features ∆MNP
s > 0,

i.e. SUSY contributions to ∆Ms in the MFV MSSM at low tan β are positive. We

explicitly mention that in figure 2, as well as in figures 3–6 below, charged Higgs

boxes are not included. Their contribution amounts to a further positive shift of the

9In the plots, the number of ‘events’ obtained after scanning ai, bi is set to 1000. We have verified that

the distributions are left qualitatively unchanged when considering subsets of these 1000 points and when

changing the binning, so that 1000 is a statistically significant number.
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Figure 3: Distribution of values for ∆MNP
s in the MFV MSSM: sum of the contributions (left

panel) and separate SUSY contributions (right panel). The distribution results from scanning the

MFV parameters ai, bi, after choosing SUSY scales as (GeV): µ = 200, m = 300, Mg̃ = 300,

M1 = 500, M2 = 500. In the plot and in the legend, ∆Ms is calculated from the absolute value

formula, keeping the sign of the real part. The percentage gives the integrated number of hits for

which ∆MNP
s > 0. [See also text, mass regime A.]
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Figure 4: Same as figure 3 but for SUSY scales chosen as (GeV): µ = 500, m = 300, Mg̃ = 300,

M1 = 100, M2 = 200. [See also text, mass regime B.]

distribution representing the sum of the other contributions, since Higgs boxes do

not depend on the MFV parameters ai, bi.

In the following discussion, we will get further insight on the positiveness of the SUSY

corrections to meson mixings, by analyzing the separate SUSY contributions which

sum up to give ∆MNP
s . Their interplay and a number of additional checks turn out
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Figure 5: Same as figure 3 but for SUSY scales chosen as (GeV): µ = 1000, m = 300, Mg̃ = 300,

M1 = 100, M2 = 500. [See also text, mass regime C.]
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Figure 6: Same as figure 3 but for SUSY scales chosen as (GeV): µ = 500, m = 1000, Mg̃ = 195,

M1 = 100, M2 = 200. [See also text, mass regime D.]

to provide as many arguments in support of the above statement.

(ii) Mass regimes

The positiveness of the sum of SUSY contributions holds true, irrespective of the mass

scenario chosen. As a matter of fact, the 48 scenarios we have considered turn out to

be classifiable into 4 main ‘mass regimes’, each characterized by a definite interplay

among the various SUSY contributions. The deciding factors are the choice of the

generic squark mass m and of the magnitude of µ, the rest of the mass parameters, as

well as the sign of µ, playing only a minor role once these are fixed. Specifically, one
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can choose a ‘not large’ value for the generic squark scale m (i.e. m < 1000 GeV in

our eq. (5.1)) and (A) |µ| small or (B) |µ| intermediate or (C) |µ| large. Alternatively,

there is one more mass regime (D) when one chooses a large value for m, irrespective

of the choice of all the other SUSY scales, including µ. The four scenarios displayed

in figures 3 to 6 are representative of such mass regimes, in the order (A) to (D).

(iii) Interplay between chargino and gluino boxes

Let us now have a closer look into the various mass regimes, by discussing, within each

of them, the main features of the separate contributions. The latter are displayed

in the right panels of figures 3 to 6. As one can see from the figures — and as it

will emerge from the subsequent discussion — the main actors in determining the

sum of SUSY contributions to meson oscillations are chargino and gluino boxes, the

remaining ones playing a minor role. We remind the reader that Higgs contributions

are not considered in this discussion and not included in figures 3 to 6. For low tan β,

Higgs contributions trivially amount to a positive shift of the total result. We will

address this point in a specific section.

Mass regime (A). Here, the smallness of µ implies a low value for the lightest

chargino mass eigenstate (see eq. (3.13)). As a consequence, contributions from

charginos tend to be large, of the order of 2 ps−1. In addition they are positive,

being dominated by the SM operator Q1 [6]. Gluino contributions are negligible in

this scenario, and the reason, still related with the smallness of µ, will be clear from

the discussion in mass regime (C) below.

A decrease in m only reinforces the chargino dominance. One finds in this case that

gluino boxes remain negligible, while, for chargino ones, the up-squark mass scale

gets lower and their contribution is correspondingly increased. As a matter of fact,

figure 3 shows somehow the ‘worst’ case among the low |µ| ones within our studied

scenarios. In the other cases, the chargino dominance is even more evident and the

number of points with ∆MNP
s > 0 even closer to 100 %.

Mass regime (B) with |µ| moderate, is a case of transition, intended to show the

rate of decrease in importance of chargino contributions with increasing |µ|. Chargino

contributions are still dominant as compared to gluino ones. Hence, in this respect,

the situation is not qualitatively different from regime (A). On the whole, an increase

in µ from 200 to 500 GeV corresponds to a decrease in the total signal from ≈ 2 to

≈ 1 ps−1, and similarly to regime (A), the total signal drops abruptly beneath the

peak value.

Mass regime (C) occurs then for large |µ|. In this case, the flavour diagonal LR

entries in the down-squark mass matrix are large (see eq. (3.4)) and in connection

with the flavour mixing induced by LL entries, enhance contributions from scalar op-

erators in gluino boxes. Even if the up-squark mass matrix has in principle the same

structure, the same mechanism turns out to be not efficient in enhancing chargino

scalar contributions.10 The main parametric dependence ruling the above mechanism

10One can provide an intuitive argument for this fact as follows: gluino contributions to the various
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for gluino contributions is then the product µ× tanβ (see eq. (3.4)). One should also

note that the increase in the value of |µ| with respect to the previous regimes largely

suppresses chargino contributions, helping in turn chargino and gluino boxes to be-

come of comparable size. The right panel of figure 5 displays a typical case for mass

regime (C), with gluino contributions amounting to roughly 30 ÷ 50 % positive cor-

rections to the chargino signal. We note here the occurrence of another interesting

mechanism: in cases where the squark scale m and/or the mass M1 are small (as

in the example of figure 5), gluino-neutralino boxes give a negative and relatively

important contribution. However, the latter is typically outpaced by the positive

contribution from pure gluino boxes (plus of course that from charginos), with a to-

tal signal around 0.5 ps−1. A similar mechanism can already be recognized in regime

(B) (see figure 4), but in that case is less evident. We mention that, within the set of

scenarios corresponding to regime (C), we found ‘extreme’ cases where scalar contri-

butions from gluino boxes completely overwhelm any other contribution. These occur

when choosing a very light squark scale, m = 100 GeV. In these cases, chargino boxes

amount to a small positive signal, while gluino-neutralino boxes give a contribution

which is negative and relatively large. The latter is again significantly counterbal-

anced by the positive, large signal from gluinos and the sum of contributions results

in a positive, quite spread signal for ∆MNP
s . However, such extreme cases correspond

to very light squark masses, the lightest down- and up-squarks being around 30 and

60 GeV, respectively, which is very unrealistic.11

Mass regime (D) is characterized by a large value for the squark scale m, in our

case 1000 GeV, and basically unaffected by the choice of any other parameter. In this

case, the largeness of the squark scale sets to zero gluino-neutralino contributions,

whose negative skewness had some effect in the previous cases. On the other hand,

both chargino and gluino distributions (positive) are characterized by a long tail, as

shown on the right panel of figure 6. The respective contributions are comparable in

size, with the magnitude of those from gluinos growing with |µ|. The average SUSY

signal is generically small, <∼ 1 ps−1.

As a last overall remark, we explicitly note that, in all regimes considered, the mag-

nitude of contributions coming from the flavour off-diagonal elements in the down-

squark matrix, entering gluino and neutralino boxes, typically does not exceed 0.5

ps−1. Therefore the latter set of contributions is strictly important only when also

operators have the structure ZDZD(loop function)Z†
DZ†

D, with ZD defined in eq. (3.9). Such structure

holds for every operator. On the other hand, chargino contributions to scalar operators have the structure

VLVR(loop function)V †
LV †

R, with VL(R) the left (right) chargino-up squark-down quark vertex coupling (see

appendix), while a similar structure — but with four V
(†)

L vertices — holds for the contributions to Q1.

Now, since VL ∼ Yu and VR ∼ Yd (see appendix A.2), in the case of charginos, contributions other than Q1

are always made small by a suppression factor of (Yd/Yu)2.
11As a further remark, we note that choosing |µ| large, with m small, causes the squark mass matrices’

determinants to be negative for most of the parameter space in the MFV parameters ai, bi, implying in

turn an odd number of negative mass squared eigenvalues. The corresponding point in the parameter space

is then discarded as unphysical. As a matter of fact, for |µ| = 1000 GeV and m = 100 GeV, the ratio of

discarded to valid points is ≈ 125, but this number drops to <∼ 2 already for m = 200 GeV.
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Figure 7: Charged Higgs boxes contribution to ∆Ms as a function of the physical charged Higgs

mass MH
±

1

. The different curves correspond to increasing values of tanβ from 3 (uppermost one) to

10 (lowermost one). The hatched area on the left of MH±
1

= 90GeV represents the experimentally

excluded region [18] from direct search only.

chargino contributions are small, i.e. in regimes (C) and in particular (D). We may

add that such regimes are phenomenologically relevant after the simple observation

that the experimental measurement of Bs oscillations [17] and its agreement with

the SM central value undoubtedly favour small NP corrections with respect to large

ones. The final word will be provided by a substantial decrease of the lattice error,

to the level of a few percent.

(iv) Role of charged Higgs boxes

In the above study, we have completely omitted the inclusion of charged Higgs boxes.

Recalling the discussion at the end of section 4, we can now investigate their contri-

bution separately, as a function of the single new SUSY scale they introduce, namely

the physical charged Higgs mass MH±
1

.

In figure 7 we report the charged Higgs contribution to ∆Ms as a function of MH±
1

,

for values of tan β between 3 and 10. The hatched area on the left of MH±
1

∼= 90 GeV

represents the region excluded after direct experimental searches [18].

As one can see, for tan β ≤ 7 charged Higgs boxes give a positive correction to ∆Ms,

irrespective of the value assumed by the physical mass M
H±

1
. For this reason, we have

chosen not to include such correction in the previous study on our mass scenarios:
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for each of them, Higgs contributions amount to a constant, positive shift of the final

result. Then, in particular, the plots of figures 3–6 provide only a ‘lower bound’ on

∆MNP
s , to be augmented by the contribution from Higgs boxes.

It is interesting to give instead an indicative upper bound on the MFV MSSM con-

tributions to ∆MNP
s for low tan β. To this aim, we can consider mass regime (A) –

chargino dominated — which tends to give the largest positive corrections (around

2 ps−1, see figure 3), together with Higgs contributions taken at a small value for

MH±
1
≈ 100 GeV. By looking at figure 7, one can see that Higgs corrections amount

to roughly another 2 ps−1. So, one can estimate MFV MSSM corrections to ∆Ms not

to exceed 4 ps−1. However, they are typically considerably smaller than this upper

bound, as one can see by inspection of the various mass regimes (see also figure 8

below). This fact shows, for the case of Bs − Bs mixing, that explicit implementa-

tion of the MFV limit in the MSSM leads to a naturally small correction to the SM

prediction: in fact, expansions (3.6) analytically realize the condition of “naturalness

of near flavour conservation” advocated in [12].

(v) The case of ∆Md

We applied the entire strategy described above also to the case of ∆Md. Results are

completely analogous, so we will limit to a few observations.

Keeping for the moment aside charged Higgs contributions, the magnitude of SUSY

corrections ∆MNP
d , normalized to the SM prediction ∆MSM

d , is basically the same

as the corresponding quantity in the Bs case, in all our studied scenarios. Also the

shapes of the distributions of values for the single contributions look very similar in

the Bd and Bs cases.

This leads to the following remark. Even in scenarios where gluinos give important

contributions from scalar operators, the latter do not bring about a sensible depen-

dence on the external quark flavours. In fact, leading scalar contributions go as ∼ m2
b ,

and those in ∼ mbms or respectively ∼ mbmd are subleading ones. The effect of the

latter is moreover completely hidden, in our case, by the lack of knowledge of the

SUSY scales and of the MFV parameters.

The inclusion of charged Higgs contributions does instead ‘distinguish’ the case of

∆Md with respect to that of ∆Ms. Now contributions to the LR scalar operator

behave as ∼ mbms(d) tan2 β for ∆Ms(d) (look at the coefficient CH+H+

4 in the ap-

pendix).12 For tan β < 10 , however, effects on the ratio ∆Md/∆Ms are within 1 %.

Only for tan β ≥ 10 do they become larger than 3 %, and can be visible once the

lattice error on ξ is at least halved with respect to the present value.

6. Additional MonteCarlo’s and role of tan β

In this section we elaborate on our main findings, as described in the previous study. In

particular, we provide further arguments in support of our results, by verifying them with a

12At the same time, contributions to CH+H+

1 are suppressed by cot2 β.
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set of additional numerical studies. The latter are designed to explore possible loopholes in

the above treatment, and to address the question how the picture changes when increasing

tan β from strictly low values.

From the above discussion, it is evident that the positiveness of the SUSY correction

∆MNP
s in the MFV MSSM is due to an interplay among different contributions, the most

important being those from charginos and gluinos. In addition, for tan β ≤ 7, Higgs boxes

further shift the result by a positive amount, depending on the chosen MH±
1

.

Such findings followed from a MonteCarlo study in which SUSY masses were fixed

and MFV parameters generated with flat distributions. To check for the robustness of our

results, we also performed additional MonteCarlo’s.

• Random scan of both SUSY scales and MFV parameters. In a first alternative

set of runs, we scanned both SUSY scales and MFV parameters. In particular SUSY

masses were assumed to follow flat distributions in the range Mi ∈ [100, 1000] GeV.13 In

such runs, we also set tan β to different values in the range tan β ∈ [3, 15]. This allowed

us to study the resulting modifications in the various contributions, in particular in those

from Higgs boxes, which for a light M
H±

1
tend to be negative when tan β > 7.

The results of such global runs are reported in figure 8 for the cases of tan β = 3 and

10. As the figure shows, for tan β = 3 the positiveness of the sum of results is confirmed by

the global run as well.14 The right panel of the first row also shows that, if MH±
1

is assumed

to be flatly distributed in the range M
H±

1
∈ [90, 1000] GeV, then Higgs contributions tend

to give a distribution completely analogous to that for charginos (the latter hides almost

entirely the former in the plot).

The second row of figure 8 reports then the same distributions, when tan β = 10. As

one can see, contributions from charginos, gluinos, neutralinos and mixed gluino-neutralino

are left qualitatively unchanged by the variation in tanβ. On the other hand, Higgs

contributions are very small and negative, as expected also from the lowermost curve in

figure 7. However, this fact has quite a small impact on the sum of all the results, which

remains chiefly positive (see left panel). We mention that a further increase in tan β to 15

confirms a similar picture: all contributions but for Higgs boxes build up an almost totally

positive distribution. The negativity of Higgs boxes, however, starts to matter, and the

sum of all contributions is positive in roughly 86 % of the counts.

• Changing the ranges for MFV parameters. A second set of runs was devised

to check for possible variations in our findings, when the MFV parameters defining the

expansions (3.6) are varied in ranges different from those specified in eq. (5.4). In the

latter, the choice of 1 as the upper bound is dictated by various considerations. First,

on ‘aesthetical’ grounds, such bound should be realistic, if the MFV expansion of the soft

terms as functions of the Yukawa couplings is a ‘natural’ one. The interpretation is that

13The lower bounds for Mg̃ and for M
H
±

1

were set to 200 GeV and 90 GeV, respectively.
14We mention that a further verification was carried out by varying the ‘B-parameters’ for the effective

operator matrix elements within the ranges allowed in [23]. Neither the positiveness of the sum of the

results, nor the interplay beween charginos and gluinos, resulting in the above regimes (A),. . . , (D), are

touched at all by variations of the B-parameters.
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Figure 8: Distributions of values for ∆MNP
s in the MFV MSSM: sum of the contributions (left

panels) and separate SUSY contributions (right panels). The distributions result from scanning the

MFV parameters ai, bi as well as the SUSY mass scales (see text for details). First and second row

plots refer to tanβ = 3 and 10, respectively.

ai and bi ‘couplings’ of O(1) cause the new flavour violating effects originated by the soft

terms to be at the same time CKM-like — i.e. generated by the SM Yukawa couplings,

according to the very MFV paradigm — and natural [12, 1]. Second, on more technical

grounds, enlarging too much the range of variation for the ai and bi may lead to a non-

efficient exploration of the full parameter space allowed. However, on this latter point, we

have verified that the shape of the distributions remains stable already after a few hundreds

random values for the ai, bi.

In this second MonteCarlo study, we kept SUSY masses fixed to scenarios, as described

in section 5.1, and increased the upper bounds for the MFV parameters from 1 to 5. The

main effect of increasing the ranges of variability is to ‘smoothen’ the difference between

chargino and gluino distributions in the various scenarios and consequently to make regimes

– 24 –



J
H
E
P
1
1
(
2
0
0
7
)
0
6
5

(A),. . . , (D) more similar to one another. However, the main features of each of them, as

well as the positiveness of the sum of contributions, are left unchanged.

On the whole, a choice of the MFV parameters according to the ranges (5.4) – mainly

dictated by ‘naturalness’ — allows a better understanding of the interplay between chargino

and gluino contributions in the different scenarios. It would be interesting to adopt a

top-down approach to the determination of the MFV parameters ai, bi, by considering

e.g. SUSY Grand Unified Theories (GUT) which at low energy reproduce the soft SUSY

breaking structure of the MSSM. If such SUSY GUTs can be constructed to be minimal

flavour violating [33], then the ai, bi at the EW breaking scale can be fitted by introducing

the corresponding constraints (3.6) between soft terms and Yukawa couplings. The latter

are both predicted within such models, in terms of the initial conditions at the GUT scale

and of the running.

We conclude this section by stressing that the feature of positiveness for the sum of

SUSY contributions to ∆Ms in the MFV MSSM is a precise signature of low tan β <∼ 10. It

is interesting to address the question whether a similar signature, but with sign reversed,

applies to the MFV MSSM in the large tan β limit. This regime requires however con-

sideration of an additional set of contributions, represented by the double neutral Higgs

penguins [8 – 10, 34, 35]. This goes beyond the scope of the present paper. For an compre-

hensive related study in the context of grand unification, see ref. [36].

7. Various considerations on MFV

The concrete application of the MFV limit to a calculable NP model, like the MSSM, gives

us now the opportunity to emphasize the main differences between the model independent

approach of [1] and the former, phenomenological definition of MFV by [2]. We will also

try and understand in which, among our studied scenarios for the SUSY scales, MFV

contributions to meson oscillations are dominated by Q1, the operator already present

within the SM. This case is referred to as ‘constrained’ MFV (CMFV) [5] and its study

will allow us to understand how natural CMFV is within the MSSM.

7.1 MFV: definition [1] versus [2]

According to the definition of MFV by [1], all the flavour and CP violation at the EW

scale is generated by the Yukawa couplings present in the SM. As we stressed several times

above, this does not mean that new sources of flavour violation should be set to zero,

but instead that they should be taken as functions of the SM Yukawa couplings. The

functional dependence is in turn fixed by their formal transformation properties under the

flavour group and gives rise to expansions like (3.6).

On the other hand, the phenomenological definition of MFV by [2] does not start

from the SM Yukawa couplings, but from the CKM matrix. In this approach, a theory is

considered minimal flavour violating, when only interactions which display explicit propor-

tionality to the CKM matrix are active. In this context, new sources of flavour violation

are simply not considered, since they have a priori “nothing to do” with the CKM matrix.
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However, in the more general approach by [1], the CKM matrix becomes a by-product

of the SM Yukawa couplings. Then the possibility of treating the Yukawa couplings as

spurion fields, allows to classify in terms of them any new source of flavour violation, and

this is why the definition by [1] has a completely general applicability. As a matter of fact,

it also provides a framework for systematic routes to beyond-MFV (see [37]).

In the general context of [1], let us finally establish a contact with definition [2].

Since in the approach [2] new flavour violating structures are taken as unrelated to the

SM Yukawa couplings, it is clear that one can reach this definition by setting the MFV

parameters bi → 0, in expansions (3.6). In this respect, an interesting MFV study where

effects beyond the less general framework [2] are not visible has been reported in ref. [38].

Specifically, in this case squark flavor mixing effects proportional to Yukawa couplings

are negligible (in particular there are no gluino contributions) and the bi coefficients are

consistently set to zero.

7.2 Deviations from ‘constrained’ MFV

In this section, we finally study — in the context of the ∆B = 2 Hamiltonian — the

special case in which MFV MSSM contributions are dominated by the operator Q1, the

one already present in the SM. This case corresponds to ‘constrained’ MFV (CMFV) [5].15

We would like to stress that CMFV is a phenomenologically relevant limit: in fact, if MFV

is motivated by the observation that experiments do not require new sources of flavour

violation besides the SM Yukawa couplings, the constrained version of it is analogously

justified by the fact that there is no compelling experimental evidence for contributions of

effective operators other than the SM ones.

The latter statement is actually strictly true when one supposes that new effective

operators be “strongly coupled”, i.e. multiplied by an overall ‘coupling’ factor taken to be

1 (or −1) [39, 1]. Bounds on new operator contributions are considerably alleviated, or

removed altogether, when such operators are weakly coupled, as is typically the case for

SUSY contributions to the observables considered in the bounds.

The limit of CMFV is a useful benchmark case to consider, both because of the generic

argument on new operators mentioned above and because it is a very well satisfied feature

of chargino contributions, which represent an important and sometimes dominating ingre-

dient in the various mass regimes of MFV. In the present section, we start again from our

calculated MFV MSSM contributions to meson oscillations. We then compare — in the

different mass scenarios considered — the part of the contributions which bears propor-

tionality to Q1 with the rest of the contributions, due to operators besides the SM one.

This exercise will allow us to understand how ‘natural’ is CMFV within the MSSM.

As a first step, we can define the ratio RCMFV as

RCMFV ≡ |∆MNP
s (C1 → 0)|

∆MNP
s (only C1)

, (7.1)

15For the sake of clarity, we mention that the definition of MFV adopted in [5] complies with [2].
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Figure 9: Ratio (7.1) of the contributions to ∆MNP
s from operators other than Q1 to that from

Q1 alone, for the set of SUSY scales chosen in figure 3, which is representative of mass regime A.

Left panel shows the sum of all contributions but for charged Higgs boxes, right panel reports the

ratio for the separate contributions.

where Ci are the Wilson coefficients of the ∆B = 2 Hamiltonian (see eq. (4.3)) in the MFV

MSSM. The ratio RCMFV provides a good ‘quantitative’ understanding of the relative

importance of contributions from non-SM operators with respect to Q1, in the Bs case.

Within every of the mass scenarios considered, the ratio RCMFV is then a distribution of

values depending on the MFV parameters ai, bi. In figures 9–12 we report such distribution

in the four representative regimes studied in section 5.2. In particular, left panels display

RCMFV for the sum of all contributions, leaving aside, again, those from charged Higgs, on

which we will comment separately. The percentage reported on top of the plots gives the

number of counts satisfying |RCMFV| ≤ 0.05. This bound can be considered — in our MFV

MSSM case — a quantitative ‘definition’ of CMFV. According to it, a given estimate of

H∆F=2
eff is taken to be CMFV, if contributions from operators other than Q1 do not exceed

5 % of the contribution from Q1. We warn the reader that this upper bound (and the

corresponding definition associated with it) has of course a large degree of arbitrariness:

we chose 5 % in view of the still large hadronic uncertainties associated with the estimate

of the 〈Qi〉.
As one can see from the left panels of figures 9–12, mass regimes (A) and (D) satisfy

well CMFV. Mass regimes (B) and in particular (C), on the other hand, do not.16 Further

insight can be gained by looking at the right panels of the same figures, where RCMFV

is displayed for the single contributions (in this case the ratio (7.1) was calculated by

restricting separately to C g̃g̃
i for gluino-gluino boxes, and so on for the other contributions).

One immediately recognizes that regime (A) is Q1-dominated, since chargino contributions

16We mention that the case displayed in figure 10 is the one with the highest CMFV percentage among

the studied scenarios belonging to mass regime B.
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Figure 10: Same as figure 9, but for the set of SUSY scales, chosen in this case as in figure 4,

which is representative of mass regime B.
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Figure 11: Same as figure 9, but for the set of SUSY scales, chosen in this case as in figure 5,

which is representative of mass regime C.

are the most important ones. Gluinos are not CMFV, but they are unimportant. In regime

(D), instead, charginos and gluinos are of the same size, but both Q1-dominated. Finally,

in regimes (B) and especially (C), CMFV does not apply: in fact, while charginos are

always important and Q1-dominated, gluinos are not negligible and not Q1-dominated. As

a matter of fact, RCMFV for gluinos is in these cases very spread, typical values being in the

range 20 ÷ 40. We mention that such large values are not shown in the plots of figures 10

and 11.

Let us then address how the above picture is modified when adding contributions from
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Figure 12: Same as figure 9, but for the set of SUSY scales, chosen in this case as in figure 6,

which is representative of mass regime D.

charged Higgses. The RCMFV for the latter, in the case of tan β = 3, ranges between

0.035 and 0.015, for M
H±

1
= 90 GeV and 1000 GeV respectively. However, contributions

from scalar operators steadily increase in importance when increasing tan β: for tan β = 4

Higgs contributions are not CMFV if MH±
1

<∼ 500 GeV and, already from tan β = 5, in

the full range of masses considered for MH±
1

. Then, whether the total sum is CMFV or

not, it depends on how large the contribution from Higgses is, with respect to the other

contributions, i.e. on the Higgs mass chosen (see figure 7).

We remark at this point, that an increase in importance of scalar contributions affects,

in general, ∆Ms and ∆Md in a different way. However, in the case of Higgs boxes, we found

that the ratio of ∆Md/∆Ms has a sensitivity with respect to variations of MH±
1

below 1

%, when tan β is strictly small. Variations start to be visible only from tan β >∼ 10, when

they become > 3 %. This point was already stated at the end of section 5, when discussing

the case of ∆Md.

Concerning contributions other than charged Higgses, we note that large deviations

from Q1-dominated MFV apply when µ is not small — regimes (B) and (C) –. However,

such deviations turn out not to affect ∆Ms and ∆Md in a sensibly different way, so that

their impact is not visible in the ratio ∆Md/∆Ms. The reason was, again, already explained

at the end of section 5.

However, the above discussion allows us to place a warning message on the conventional

wisdom that, for low tan β, MFV in the ∆F = 2 Hamiltonian is Q1-dominated. This is

clearly not true when Higgs and gluino contributions are included, and when µ is not small

in magnitude. In this case, the approximation Yd → 0, on the ground that tan β is small,

turns out not to work.
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7.3 A lower bound on ∆Ms,d from CMFV

Recently, it has been shown analytically in [40] that, within the CMFV models, the lower

bounds on ∆Md,s are simply given by (∆Md,s)SM. The proof holds, assuming general

exchange of charged gauge bosons, Goldstone bosons and physical scalars in boxes together

with Dirac fermions, and under phenomenologically realistic assumptions on their masses.

On the other hand, two possible exceptions to the argument were found to arise in the

presence of Majorana fermions and of U(1) neutral gauge bosons in box diagrams, which

could individually bring ∆Md,s below (∆Md,s)SM. Within the model-independent approach

of [40], it seems impossible to exclude CMFV models involving negative contributions to

∆Md,s, caused by Majorana fermions and/or U(1) neutral gauge bosons, that are not

cancelled by the remaining positive contributions from the other possible particle exchanges.

Within our study, we found in the previous section that only mass regimes (A) and

(D) are Q1-dominated, i.e. CMFV. In particular, the above mentioned exception, of a

CMFV case in which Majorana fermion contributions are not negligible, arises in regime

(D) (see figure 6). However in this case, Majorana contributions, represented by the gluino

boxes, are also positive, so that, at least for low tan β, the lower bounds of [40] still hold.

Finally, regime (A) exactly corresponds to the assumptions made in the proof of [40], since

Majorana contributions are negligible. In this case we numerically confirm the positivity

of the NP contributions.

We find actually remarkable that, within the MFV MSSM at low tan β, the condition

∆Ms,d > (∆Ms,d)SM holds even when new operators give non-negligible contributions.

8. MFV-unitarity triangle

In this section, we would like to emphasize that the so-called Universal Unitarity Triangle

(UUT) [2] is valid only within the CMFV models, and not within the general class of MFV

models, like the MSSM considered here.

Indeed, the usual construction of the UUT is based on the value of the angle β, mea-

sured by means of the SψKS
asymmetry, and on the value of the side Rt, obtained from

the ratio ∆Md/∆Ms, that within CMFV is independent of any new physics contributions.

As already stressed in [10, 5], in the context of the MSSM at large tan β, the presence

of new operator contributions to ∆Ms and ∆Md generally modifies the relation between

Rt and ∆Md/∆Ms, so that it now reads [10, 5]

Rt = 0.913

[

ξ

1.23

]

√

17.8/ps

∆Ms

√

∆Md

0.507/ps

√

Rsd , Rsd =
1 + fs

1 + fd

, (8.1)

with ∆Mq = (∆Mq)SM(1 + fq) and ξ being a known non-perturbative parameter, ξ =

1.23(6).

Basing on the results of the previous sections, formula (8.1) applies to the MSSM at

low tan β as well, with Rsd 6= 1, due to the presence of new operators that differently

affect ∆Ms and ∆Md. This can already be seen by adding to the SM expression for the

mass differences, the contributions from the charged Higgs boxes, which do not depend on
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Figure 13: The blue area represents the correlation between Rb and γ, valid in MFV. The orange

area corresponds to the region with Rt fixed to the value in eq. (8.1). CMFV occurs in the intersec-

tion between the two areas, displayed in red. Finally, the green dashed box shows the 1σ-allowed

range for Rb and γ, as measured from tree-level decays.

the MFV parameters ai, bi. As we showed in section 7, when addressing deviations from

CMFV, the ratio ∆Md/∆Ms is subject to variations at the percent level, depending on

the value chosen for MH±
1

. Similar effects occur in principle when considering the other

contributions as well, but in this case the variation is completely hidden by the lack of

knowledge of the values for the MFV parameters ai, bi and of course of the SUSY scales.

The departure from CMFV is more pronounced in the MFV MSSM for large tan β, but

such analysis is beyond the scope of the present paper.

The above argument clearly demonstrates that the MFV MSSM, even at low tan β,

does not belong to the class of CMFV models, and consequently, the UUT obtained from

Rt and βψKS
is not generically valid in MFV.

This discussion suggests that the unitarity triangle valid for all MFV models is not the

UUT of [2] — and analyzed in detail by [4] — but a triangle constructed from the angle

βψKS
and the new-physics-independent value of |Vub| or γ from tree-level decays.

In this context, the known value βψKS
= (21.2±1.0)◦ establishes a correlation between

the side Rb,

Rb =

(

1 − λ2

2

)

1

λ

∣

∣

∣

∣

Vub

Vcb

∣

∣

∣

∣

, (8.2)

of the unitarity triangle and the angle γ, that is valid for all models with MFV. Such

correlation is represented in figure 13 as a blue area, under the assumption β = βψKS
=

(21.2 ± 1.0)◦. The orange area in the figure displays instead the region characterized by

Rt fixed to the value in eq. (8.1), with Rsd = 1 and ξ = 1.23(6). The intersection between

the two areas – displayed in red — is then the one allowed to CMFV. Figure 13 also shows

the 1σ-allowed range from tree-level decays, namely 62◦ ≤ γ ≤ 102◦ and 0.40 ≤ Rb ≤ 0.45,

as a green dashed box. The latter overlaps with the higher branch of the MFV area but
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not with the CMFV one. This indicates, on the one hand, somehow a ‘tension’ [5] between

the tree-level determination of Rb and the one favoured by CMFV. On the other hand,

the overlap between the green box and the blue area suggests that this tension disappears

within MFV, provided γ > 80◦.

It will be interesting to monitor with the help of figure 13 the progress in the determi-

nation of Rb and of the angle γ from tree-level decays, and to verify whether the correlation

in question is satisfied by the data.

Equivalently, with precise values of γ and Rb, that are used for the construction of the

reference unitarity triangle, it will be possible to find out whether the CMFV UUT or the

MFV-UT is chosen by nature, or instead if one has to introduce non-MFV interactions to

fit the data. This would occur if the experimental point (γ,Rb) lies outside the blue area

in figure 13.

9. Conclusions and outlook

In this paper, we have applied the effective field theory definition of Minimal Flavour

Violation (MFV) to the MSSM and explicitly shown how, by this definition, the new

sources of flavour and CP violation present in the MSSM become functions of the SM

Yukawa couplings. We have subsequently applied the MFV limit to the MSSM ∆B = 2

Hamiltonian at low tan β.

Our findings can be summarized in the following main messages:

1. In the MFV limit of the MSSM, the soft breaking terms become functions of the SM

Yukawa couplings. This non-trivial functional dependence causes flavour violation

due to soft terms to be not zero in MFV, but instead ‘CKM-like’. The constraints

imposed on the soft terms by the MFV assumption lead to a significant increase in

the predictive power of the model.

2. The supersymmetric corrections to ∆Ms,d at low tan β are found to be always positive

with respect to the SM formula. This feature is due to an interesting interplay

between the chargino and gluino box diagram contributions.

3. Even at low tan β, the MSSM does not in general belong to the class of models

with CMFV, in contrast to the statements made in the literature. The presence

of gluino box diagram contributions necessarily brings in new operators beyond the

(V − A) ⊗ (V − A) one, whose importance depends on the mass regime chosen.

4. The side Rt, used in the determination of the Universal Unitarity Triangle, is actually

not a good constant in MFV. Within the MFV MSSM at low tanβ, we have found

variations that can reach the percent level, depending again on the mass regime

chosen, and on the value of tan β. To resolve such variations, one however needs a

lattice determination for ξ with an error at most half the present value. In the case

of the MFV MSSM at large tan β the situation is in this respect ‘easier’, since larger

deviations from the CMFV value of Rt are more likely.
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5. A unitarity triangle valid in all MFV models (MFV-UT) can be constructed using

only |Vub| or γ, from tree-level decays, and the angle β, extracted from SψKS
. In

particular, with the measured value of βψKS
, MFV implies a testable correlation

between |Vub| and γ. With the present high value of |Vub|, MFV favours γ > 80◦.

The LHC program on the measurement of γ is then of utmost importance to cleanly

consolidate — or disprove — the MFV paradigm.
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A. Wilson coefficients for the ∆B = 2 effective Hamiltonian in the MSSM

A.1 Contributions

Below we list the non-vanishing new physics contributions to the Wilson coefficients for

Bs mixing, eq. (4.3). The case of Bd mixing is obtained by the replacement 2 → 1 (or

5 → 4 where applicable) in the external quark indices. In the following expressions, it

is always understood that internal indices are summed over their respective ranges, i.e.

I, J,K = 1, . . . , 3 for quarks, i, j = 1, . . . , 6 for squarks, a, b = 1, 2 for charginos and

a, b = 1, . . . , 4 for neutralinos.

Charged Higgs contributions.

CH+H+

1 =
g4
2

16π2
KI3KJ3K

∗
I2K

∗
J2

m2
uI

m2
uJ

8M4
W

{
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W D0(m

2
uI
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1
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H±

1
,M2

W ) cot2 β
}

,

C̃H+H+

1 = − g4
2

16π2
KI3KJ3K

∗
I2K

∗
J2

m2
sm

2
b

8M4
W

×
{

D2(m
2
uI

,m2
uJ

,M2
H±

1
,M2

H±
1

) tan4 β + 2D2(m
2
uI

,m2
uJ

,M2
H±

1
,M2

W ) tan2 β
}

,

CH+H+

2 = − g4
2

16π2
KI3KJ3K

∗
I2K

∗
J2

m2
sm

2
uI

m2
uJ

8M4
W

×
{

D0(m
2
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,m2
uJ

,M2
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1
,M2
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2
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,M2
H±

1
,M2

W )
}

,
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CH+H+

4 =
g4
2

16π2
KI3KJ3K

∗
I2K

∗
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}

.

The above coefficients CH+H+

i and C̃H+H+

i arise from the sum of H+
1 −H+

1 , H+
1 −H+

2 and

H+
1 − W+ boxes (with H+

2 the charged Goldstone boson, entering calculations away from

the unitary gauge).

Chargino contributions.
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The coefficients C̃χ+χ+

1 and C̃χ+χ+

3 can be obtained from Cχ+χ+

1 and Cχ+χ+

3 respectively

by the replacement of left- and right-handed chargino couplings V L ↔ V R.

Neutralino contributions.
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Interchanging left- with right-handed neutralino couplings in Cχ0χ0

1,2,3 yields the expressions

for the Wilson coefficients C̃χ0χ0

1,2,3 .

Mixed neutralino and gluino contributions.

C g̃χ0
1 = − g2

3

16π2

2

3
D2(M

2
Di

,M2
Dj

,M2
χ0

a
,Mg̃)(ZD)3j(ZD)∗2i

[

V L
χDd

]

ai3

[

V L
χDd

]∗
aj2

− g2
3

16π2

Mχ0
a
Mg̃

6
D0(M

2
Di

,M2
Dj

,M2
χ0

a
,Mg̃)

×
{

(ZD)3i(ZD)3j

[

V L
χDd

]∗
ai2

[

V L
χDd

]∗
aj2

+ (ZD)∗2i(ZD)∗2j

[

V L
χDd

]

ai3

[

V L
χDd

]

aj3

}

,

C g̃χ0
2 =

g2
3

16π2

Mχ0
a
Mg̃

3
D0(M

2
Di

,M2
Dj

,M2
χ0

a
,Mg̃)

{

3(ZD)3j(ZD)∗5i

[

V L
χDd

]

ai3

[

V R
χDd

]∗
aj2

+(ZD)3i(ZD)3j

[

V R
χDd

]∗
ai2

[

V R
χDd

]∗
aj2

+(ZD)∗5i(ZD)∗5j

[

V L
χDd

]

ai3

[

V L
χDd

]

aj3

}

,

C g̃χ0
3 = − g2

3

16π2

Mχ0
a
Mg̃

3
D0(M

2
Di

,M2
Dj

,M2
χ0

a
,Mg̃)

{

(ZD)3j(ZD)∗5i

[

V L
χDd

]

ai3

[

V R
χDd

]∗
aj2

−(ZD)3i(ZD)3j

[

V R
χDd

]∗
ai2

[

V R
χDd

]∗
aj2

−(ZD)∗5i(ZD)∗5j

[

V L
χDd

]

ai3

[

V L
χDd

]

aj3

}

,

C g̃χ0
4 = − g2

3

16π2

2

3
D2(M

2
Di

,M2
Dj

,M2
χ0

a
,Mg̃)

×
{

(ZD)3j(ZD)∗2i

[

V R
χDd

]

ai3

[

V R
χDd

]∗
aj2

+ (ZD)6j(ZD)∗5i

[

V L
χDd

]

ai3

[

V L
χDd

]∗
aj2

−(ZD)3j(ZD)6i

[

V L
χDd

]∗
ai2

[

V R
χDd

]∗
aj2

− (ZD)∗2j(ZD)∗5i

[

V L
χDd

]

ai3

[

V R
χDd

]

aj3

−3(ZD)6i(ZD)3j

[

V L
χDd

]∗
aj2

[

V R
χDd

]∗
ai2

− 3(ZD)∗5i(ZD)∗2j

[

V L
χDd

]

aj3

[

V R
χDd

]

ai3

}

+
g2
3

16π2
Mχ0

a
Mg̃D0(M

2
Di

,M2
Dj

,M2
χ0

a
,Mg̃)

×
{

(ZD)3j(ZD)∗5i

[

V R
χDd

]

ai3

[

V L
χDd

]∗
aj2

+ (ZD)6j(ZD)∗2i

[

V L
χDd

]

ai3

[

V R
χDd

]∗
aj2

}

,

C g̃χ0
5 =

g2
3

16π2

2

3
D2(M

2
Di

,M2
Dj

,M2
χ0

a
,Mg̃)

×
{

3(ZD)3j(ZD)∗2i

[

V R
χDd

]

ai3

[

V R
χDd

]∗
aj2

+ 3(ZD)6j(ZD)∗5i

[

V L
χDd

]

ai3

[

V L
χDd

]∗
aj2

−3(ZD)3j(ZD)6i

[

V L
χDd

]∗
ai2

[

V R
χDd

]∗
aj2

− 3(ZD)∗2j(ZD)∗5i

[

V L
χDd

]

ai3

[

V R
χDd

]

aj3

−(ZD)6i(ZD)3j

[

V L
χDd

]∗
aj2

[

V R
χDd

]∗
ai2

− (ZD)∗5i(ZD)∗2j

[

V L
χDd

]

aj3

[

V R
χDd

]

ai3

}

− g2
3

16π2

Mχ0
a
Mg̃

3
D0(M

2
Di

,M2
Dj

,M2
χ0

a
,Mg̃)

×
{

(ZD)3j(ZD)∗5i

[

V R
χDd

]

ai3

[

V L
χDd

]∗
aj2

+ (ZD)6j(ZD)∗2i

[

V L
χDd

]

ai3

[

V R
χDd

]∗
aj2

}

.

To obtain the coefficients C̃ g̃χ0
1,2,3 from C g̃χ0

1,2,3, one again has to interchange left- with right-

handed neutralino couplings. In addition, analogous replacements have to be performed

for the elements of the down squark mixing matrix that explicitly appear in the above

expressions: (ZD)2i ↔ (ZD)5i and (ZD)3i ↔ (ZD)6i.
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Gluino contributions.

C g̃g̃
1 = − g4

3

16π2

1

9
M2

g̃ D0(M
2
Di

,M2
Dj

,M2
g̃ ,M2

g̃ )(ZD)3i(ZD)3j(ZD)∗2i(ZD)∗2j

− g4
3

16π2

11

9
D2(M

2
Di

,M2
Dj

,M2
g̃ ,M2

g̃ )(ZD)3i(ZD)3j(ZD)∗2i(ZD)∗2j ,

C g̃g̃
2 = − g4

3

16π2

17

18
M2

g̃ D0(M
2
Di

,M2
Dj

,M2
g̃ ,M2

g̃ )(ZD)3i(ZD)3j(ZD)∗5i(ZD)∗5j ,

C g̃g̃
3 =

g4
3

16π2

1

6
M2

g̃ D0(M
2
Di

,M2
Dj

,M2
g̃ ,M2

g̃ )(ZD)3i(ZD)3j(ZD)∗5i(ZD)∗5j ,

C g̃g̃
4 = − g4

3

16π2

7

3
M2

g̃ D0(M
2
Di

,M2
Dj

,M2
g̃ ,M2

g̃ )(ZD)3i(ZD)6j(ZD)∗2i(ZD)∗5j

+
g4
3

16π2

2

9
D2(M

2
Di

,M2
Dj

,M2
g̃ ,M2

g̃ )(ZD)3i(ZD)6j

{

6(ZD)∗2i(ZD)∗5j +11(ZD)∗2j(ZD)∗5i

}

,

C g̃g̃
5 = − g4

3

16π2

1

9
M2

g̃ D0(M
2
Di

,M2
Dj

,M2
g̃ ,M2

g̃ )(ZD)3i(ZD)6j(ZD)∗2i(ZD)∗5j

+
g4
3

16π2

10

9
D2(M

2
Di

,M2
Dj

,M2
g̃ ,M2

g̃ )(ZD)3i(ZD)6j

{

3(ZD)∗2j(ZD)∗5i−2(ZD)∗2i(ZD)∗5j

}

.

To get the corresponding expressions for the coefficients C̃ g̃g̃
1,2,3 one again has to carry out

the following replacements for the down squark mixing matrix: (ZD)2i ↔ (ZD)5i and

(ZD)3i ↔ (ZD)6i.

A.2 Chargino and neutralino couplings

Here we explicitly report — in terms of gauge couplings, Yukawa couplings and rotation

matrices — the chargino and neutralino couplings used in the expressions for the Wilson

coefficients.

[

V L
χUd

]

aiI
=

(

− e

sW

(ZU )∗Ki(Z+)1a + Ŷ K
u (ZU )∗(K+3)i(Z+)2a

)

KKI ,

[

V R
χUd

]

aiI
= −Ŷ I

d (ZU )∗Ki(Z−)∗2aKKI ,
[

V L
χDd

]

aiI
= − e√

2sW cW

(ZD)Ii

(sW

3
(ZN )1a − cW (ZN )2a

)

+ Ŷ I
d (ZD)(I+3)i(ZN )3a ,

[

V R
χDd

]

aiI
= −e

√
2

3cW
(ZD)(I+3)i(ZN )∗1a + Ŷ I

d (ZD)Ii(ZN )∗3a .

A.3 Loop functions

Finally, we give the explicit expressions for the loop functions that appear in the Wilson

coefficients listed above.

D0(m
2
1,m

2
2,m

2
3,m

2
4) =

m2
1 ln m2

1

(m2
4−m2

1)(m
2
3−m2

1)(m
2
2−m2

1)
+{1↔2}+{1↔3}+{1↔4} ,

D2(m
2
1,m

2
2,m

2
3,m

2
4) =

1

4

[

m4
1 ln m2

1

(m2
4−m2

1)(m
2
3−m2

1)(m
2
2−m2

1)
+{1↔2}+{1↔3}+{1↔4}

]

.
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